Welcome. Please log in or register.

stoichiometry

Larry Dukerich's picture

Conceptual Chemistry

Wed, 11/19/2014 - 16:19 -- Larry Dukerich
BCA charts

In a recent contribution to ChemEd X "Stoichiometry is Easy", the author states that he has "vacillated over the years between using an algorithmic method, and an inquiry-based approach to teaching stoichiometry. " I would like to suggest that there is another approach to mastering stoichiometry and that it should precede the algorithmic one: it is the conceptual approach based on a particle model to represent the species involved in chemical reactions.

DAVID LICATA's picture

Stoichiometry is Easy

Sun, 11/16/2014 - 20:30 -- DAVID LICATA
Keep Calm Stoichiometry is Easy

This article describes a three week lesson plan for teaching stoichiometry using an algorithmic method. Two labs (one designed as a laboratory quiz) several cooperative learning exercises, student worksheets and guided instructional frameworks (forcing students to develop good habits in writing measures and doing problem solving) are included. The highlight of the lessons is the "chemistry carol" (based on Felix Mendelssohn's music for "Hark! The Herald Angels Sing") in which students recite a five-step algorithm for completing stoichiometry problems. While algorithmic processes may not always be best, I have found that there are many benefits to giving students a firm background and something to always fall back upon in one of the more challenging topics of chemistry. I believe that the good habits developed in this method of stoichiometry carry through to all the rest of their chemistry work, making it much easier to use inquiry-based methods when doing other advanced chemistry topics.

DAVID LICATA's picture

Writing Conversion Factors

Sat, 11/15/2014 - 23:01 -- DAVID LICATA
Writing Conversion Factors Preview

This worksheet is intended to be used as a "Guided Instructional Activity" (GIA). Students read a statement that gives a either a conversion factor or a pair of related measures and then write the information as two equivalent fractions ("conversion factors") and as an equality. In each representation, students are directed to give the numeral of the measure, unit, and identity of the chemical.

Time required: 

35 to 45 minutes.

DAVID LICATA's picture

Stoichiometry Guided Instructional Activities with Guide Framework

Sat, 11/08/2014 - 21:40 -- DAVID LICATA
Initial framework for use with stoichiometry GIAs

This set of three worksheets are intended to be used as collaborative "Guided Instructional Activities" (GIAs). Two students cooperate to complete the steps of a stoichiometry problem, alternately doing parts of the process as they explain what they are doing and evaluate their partner's work. These worksheets emphasize an algorothmic approach that helps students learn to think aobut the purpose of a question, organize their work, set it up so that it is easily readable and can be followed by others, and make good use of "unit analysis" (dimensional analysis).

Time required: 

Each of the activity worksheets requires 40 to 55 minutes.

DAVID LICATA's picture

Finding and Writing the Molar Mass of Elements [corrected]

Tue, 11/04/2014 - 20:09 -- DAVID LICATA
Finding and Writing Molar Mass Screenshot

This worksheet is intended to be used as a "Guided Instructional Activity" (GIA). It asks students to find the molar mass of selected elements and write the molar mass as two equivalent fractions ("conversion factors") and as an equality. In each representation, students are forced to give the numeral of the measure, unit, and identity of the chemical.

Time required: 

About 45 minutes.

DAVID LICATA's picture

Stoichiometry Fireworks Lab Quiz

Mon, 11/03/2014 - 21:39 -- DAVID LICATA
Ignition of sugar and potassium chlorate produces purple flames and sparks.

Given the amount of one reactant, students must use stoichiometry to find the ideal amount of the second reagent to use to create purple fireworks. The teacher ignites each groups' fireworks. Ideal mixture create little or no ash. Student assignment sheet with directions (and different initial amounts) plus teacher information and sample answers are included. This is an exciting and engaging activity that can be used as a stoichiometry quiz.

Time required: 

With one balance per table (two groups), the calculations should take about 10 minutes, the measures another 10 minutes. Ideally, students should be prepared to deliver their mixture to the teacher within 20 minutes. In practice, many students will take longer, particularly if the formula for potassium chlorate is not given and students are not familiar enough with ionic nomenclature.

The teacher will need about one minute per group to announce the group's mixture, ignite it, and wait for student responses. So if there are 15 groups, the teacher should allow about 15 minutes to ignite all the mixtures.

Deanna Cullen's picture

Stoichiometry Resources

Mon, 02/18/2013 - 12:45 -- Deanna Cullen
Limiting PhET

Moles, mole ratios and stoichiometry have been frustrating topics for many of my chemistry students. The MOLE and Avogadro’s number get tangled up in other Chemistry jargon and students have stared at me like I am speaking another language. I have been around long enough to know this is a problem that many of us have faced. I have tried many ideas that have helped and I want to share a few. 

Subscribe to stoichiometry